Site icon EngerLab

Publications

Show all

Journal Articles

2006

Enger, Shirin A.; af Rosenschöld, Per Munck; Rezaei, Arash; Lundqvist, Hans

Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements Journal Article

In: Medical Physics, vol. 33, no. 2, pp. 337–341, 2006, ISSN: 0094-2405.

Abstract | Links | BibTeX | Tags: Computer-Assisted, Fast Neutrons, Gadolinium, Humans, Imaging, Monte Carlo Method, Neutron Capture Therapy, Phantoms, Radiologic, Radiometry, Radiotherapy Planning, Reproducibility of Results, Technology

@article{enger_monte_2006,
title = {Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements},
author = {Shirin A. Enger and Per Munck af Rosenschöld and Arash Rezaei and Hans Lundqvist},
doi = {10.1118/1.2150787},
issn = {0094-2405},
year = {2006},
date = {2006-02-01},
journal = {Medical Physics},
volume = {33},
number = {2},
pages = {337--341},
abstract = {GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.},
keywords = {Computer-Assisted, Fast Neutrons, Gadolinium, Humans, Imaging, Monte Carlo Method, Neutron Capture Therapy, Phantoms, Radiologic, Radiometry, Radiotherapy Planning, Reproducibility of Results, Technology},
pubstate = {published},
tppubtype = {article}
}

Close

GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

Close

Exit mobile version