Site icon EngerLab

Publications

Show all

Journal Articles

2020

Famulari, Gabriel; Alfieri, Joanne; Duclos, Marie; Vuong, Té; Enger, Shirin A.

Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy? Journal Article

In: Brachytherapy, vol. 19, no. 2, pp. 255–263, 2020, ISSN: 1873-1449.

Abstract | Links | BibTeX | Tags: Bone and Bones, Brachytherapy, Cobalt Radioisotopes, Computer Simulation, Computer-Assisted, Dose calculation, Gadolinium, Humans, Intermediate-energy source, Iridium Radioisotopes, Male, Monte Carlo, Prostatic Neoplasms, Radiation Dosage, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Selenium Radioisotopes, Tissue composition, Tongue Neoplasms, Ytterbium

@article{famulari_can_2020,
title = {Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy?},
author = {Gabriel Famulari and Joanne Alfieri and Marie Duclos and Té Vuong and Shirin A. Enger},
doi = {10.1016/j.brachy.2019.12.004},
issn = {1873-1449},
year = {2020},
date = {2020-04-01},
journal = {Brachytherapy},
volume = {19},
number = {2},
pages = {255--263},
abstract = {PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m).
RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.},
keywords = {Bone and Bones, Brachytherapy, Cobalt Radioisotopes, Computer Simulation, Computer-Assisted, Dose calculation, Gadolinium, Humans, Intermediate-energy source, Iridium Radioisotopes, Male, Monte Carlo, Prostatic Neoplasms, Radiation Dosage, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Selenium Radioisotopes, Tissue composition, Tongue Neoplasms, Ytterbium},
pubstate = {published},
tppubtype = {article}
}

Close

PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m).
RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.

Close

Famulari, Gabriel; Alfieri, Joanne; Duclos, Marie; Vuong, Té; Enger, Shirin A.

Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy? Journal Article

In: Brachytherapy, vol. 19, no. 2, pp. 255–263, 2020, ISSN: 1538-4721.

Abstract | Links | BibTeX | Tags: Brachytherapy, Dose calculation, Intermediate-energy source, Monte Carlo, Tissue composition

@article{famulari_can_2020b,
title = {Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy?},
author = {Gabriel Famulari and Joanne Alfieri and Marie Duclos and Té Vuong and Shirin A. Enger},
url = {https://www.sciencedirect.com/science/article/pii/S1538472119306531},
doi = {10.1016/j.brachy.2019.12.004},
issn = {1538-4721},
year = {2020},
date = {2020-03-01},
urldate = {2021-09-08},
journal = {Brachytherapy},
volume = {19},
number = {2},
pages = {255--263},
abstract = {Purpose
Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy.
Methods and Materials Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m).
Results
Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%–2% for prostate and 4%–7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
Conclusions
Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.},
keywords = {Brachytherapy, Dose calculation, Intermediate-energy source, Monte Carlo, Tissue composition},
pubstate = {published},
tppubtype = {article}
}

Close

Purpose
Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy.
Methods and Materials Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m).
Results
Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%–2% for prostate and 4%–7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
Conclusions
Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.

Close

Exit mobile version