Journal Articles
2021
Morcos, Marc; Viswanathan, Akila N.; Enger, Shirin A.
In: Medical Physics, vol. 48, no. 5, pp. 2604–2613, 2021, ISSN: 2473-4209.
Abstract | Links | BibTeX | Tags: Brachytherapy, Computer-Assisted, dynamic shield brachytherapy, Female, Humans, IMBT, Intensity modulated brachytherapy, Iridium Radioisotopes, Monte Carlo Method, MR-guided brachytherapy, Radiotherapy Dosage, Radiotherapy Planning, rotating shield brachytherapy, RSBT, Uterine Cervical Neoplasms
@article{morcos_impact_2021,
title = {On the impact of absorbed dose specification, tissue heterogeneities, and applicator heterogeneities on Monte Carlo-based dosimetry of Ir-192, Se-75, and Yb-169 in conventional and intensity-modulated brachytherapy for the treatment of cervical cancer},
author = {Marc Morcos and Akila N. Viswanathan and Shirin A. Enger},
doi = {10.1002/mp.14802},
issn = {2473-4209},
year = {2021},
date = {2021-05-01},
journal = {Medical Physics},
volume = {48},
number = {5},
pages = {2604--2613},
abstract = {PURPOSE: The purpose of this study was to evaluate the impact of dose reporting schemes and tissue/applicator heterogeneities for 192 Ir-, 75 Se-, and 169 Yb-based MRI-guided conventional and intensity-modulated brachytherapy. METHODS AND MATERIALS: Treatment plans using a variety of dose reporting and tissue/applicator segmentation schemes were generated for a cohort (n = 10) of cervical cancer patients treated with 192 Ir-based Venezia brachytherapy. Dose calculations were performed using RapidBrachyMCTPS, a Geant4-based research Monte Carlo treatment planning system. Ultimately, five dose calculation scenarios were evaluated: (a) dose to water in water (Dw,w ); (b) Dw,w taking the applicator material into consideration (Dw,wApp ); (c) dose to water in medium (Dw,m ); (d and e) dose to medium in medium with mass densities assigned either nominally per structure (Dm,m (Nom) ) or voxel-by-voxel (Dm,m ).
RESULTS: Ignoring the plastic Venezia applicator (Dw,wApp ) overestimates Dm,m by up to 1% (average) with high energy source (192 Ir and 75 Se) and up to 2% with 169 Yb. Scoring dose to water (Dw,wApp or Dw,m ) generally overestimates dose and this effect increases with decreasing photon energy. Reporting dose other than Dm,m (or Dm,m Nom ) for 169 Yb-based conventional and intensity-modulated brachytherapy leads to a simultaneous overestimation (up to 4%) of CTVHR D90 and underestimation (up to 2%) of bladder D2cc due to a significant dip in the mass-energy absorption ratios at the depths of nearby targets and OARs. Using a nominal mass-density assignment per structure, rather than a CT-derived voxel-by-voxel assignment for MRI-guided brachytherapy, amounts to a dose error up to 1% for all radionuclides considered.
CONCLUSIONS: The effects of the considered dose reporting schemes trend correspondingly between conventional and intensity-modulated brachytherapy. In the absence of CT-derived mass densities, MRI-only-based dosimetry can adequately approximate Dm,m by assigning nominal mass densities to structures. Tissue and applicator heterogeneities do not significantly impact dosimetry for 192 Ir and 75 Se, but do for 169 Yb; dose reporting must be explicitly defined since Dw,m and Dw,w may overstate the dosimetric benefits.},
keywords = {Brachytherapy, Computer-Assisted, dynamic shield brachytherapy, Female, Humans, IMBT, Intensity modulated brachytherapy, Iridium Radioisotopes, Monte Carlo Method, MR-guided brachytherapy, Radiotherapy Dosage, Radiotherapy Planning, rotating shield brachytherapy, RSBT, Uterine Cervical Neoplasms},
pubstate = {published},
tppubtype = {article}
}
PURPOSE: The purpose of this study was to evaluate the impact of dose reporting schemes and tissue/applicator heterogeneities for 192 Ir-, 75 Se-, and 169 Yb-based MRI-guided conventional and intensity-modulated brachytherapy. METHODS AND MATERIALS: Treatment plans using a variety of dose reporting and tissue/applicator segmentation schemes were generated for a cohort (n = 10) of cervical cancer patients treated with 192 Ir-based Venezia brachytherapy. Dose calculations were performed using RapidBrachyMCTPS, a Geant4-based research Monte Carlo treatment planning system. Ultimately, five dose calculation scenarios were evaluated: (a) dose to water in water (Dw,w ); (b) Dw,w taking the applicator material into consideration (Dw,wApp ); (c) dose to water in medium (Dw,m ); (d and e) dose to medium in medium with mass densities assigned either nominally per structure (Dm,m (Nom) ) or voxel-by-voxel (Dm,m ).
RESULTS: Ignoring the plastic Venezia applicator (Dw,wApp ) overestimates Dm,m by up to 1% (average) with high energy source (192 Ir and 75 Se) and up to 2% with 169 Yb. Scoring dose to water (Dw,wApp or Dw,m ) generally overestimates dose and this effect increases with decreasing photon energy. Reporting dose other than Dm,m (or Dm,m Nom ) for 169 Yb-based conventional and intensity-modulated brachytherapy leads to a simultaneous overestimation (up to 4%) of CTVHR D90 and underestimation (up to 2%) of bladder D2cc due to a significant dip in the mass-energy absorption ratios at the depths of nearby targets and OARs. Using a nominal mass-density assignment per structure, rather than a CT-derived voxel-by-voxel assignment for MRI-guided brachytherapy, amounts to a dose error up to 1% for all radionuclides considered.
CONCLUSIONS: The effects of the considered dose reporting schemes trend correspondingly between conventional and intensity-modulated brachytherapy. In the absence of CT-derived mass densities, MRI-only-based dosimetry can adequately approximate Dm,m by assigning nominal mass densities to structures. Tissue and applicator heterogeneities do not significantly impact dosimetry for 192 Ir and 75 Se, but do for 169 Yb; dose reporting must be explicitly defined since Dw,m and Dw,w may overstate the dosimetric benefits.2020
Mao, Ximeng; Pineau, Joelle; Keyes, Roy; Enger, Shirin A.
RapidBrachyDL: Rapid Radiation Dose Calculations in Brachytherapy Via Deep Learning Journal Article
In: International Journal of Radiation Oncology, Biology, Physics, vol. 108, no. 3, pp. 802–812, 2020, ISSN: 1879-355X.
Abstract | Links | BibTeX | Tags: Brachytherapy, Colon, Computer, Computer-Assisted, Deep Learning, Female, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Neural Networks, Organs at Risk, Prostate, Prostatic Neoplasms, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Retrospective Studies, Sigmoid, Urinary Bladder, Uterine Cervical Neoplasms
@article{mao_rapidbrachydl_2020,
title = {RapidBrachyDL: Rapid Radiation Dose Calculations in Brachytherapy Via Deep Learning},
author = {Ximeng Mao and Joelle Pineau and Roy Keyes and Shirin A. Enger},
doi = {10.1016/j.ijrobp.2020.04.045},
issn = {1879-355X},
year = {2020},
date = {2020-11-01},
journal = {International Journal of Radiation Oncology, Biology, Physics},
volume = {108},
number = {3},
pages = {802--812},
abstract = {PURPOSE: Detailed and accurate absorbed dose calculations from radiation interactions with the human body can be obtained with the Monte Carlo (MC) method. However, the MC method can be slow for use in the time-sensitive clinical workflow. The aim of this study was to provide a solution to the accuracy-time trade-off for 192Ir-based high-dose-rate brachytherapy by using deep learning.
METHODS AND MATERIALS: RapidBrachyDL, a 3-dimensional deep convolutional neural network (CNN) model, is proposed to predict dose distributions calculated with the MC method given a patient's computed tomography images, contours of clinical target volume (CTV) and organs at risk, and treatment plan. Sixty-one patients with prostate cancer and 10 patients with cervical cancer were included in this study, with data from 47 patients with prostate cancer being used to train the model.
RESULTS: Compared with ground truth MC simulations, the predicted dose distributions by RapidBrachyDL showed a consistent shape in the dose-volume histograms (DVHs); comparable DVH dosimetric indices including 0.73% difference for prostate CTV D90, 1.1% for rectum D2cc, 1.45% for urethra D0.1cc, and 1.05% for bladder D2cc; and substantially smaller prediction time, acceleration by a factor of 300. RapidBrachyDL also demonstrated good generalization to cervical data with 1.73%, 2.46%, 1.68%, and 1.74% difference for CTV D90, rectum D2cc, sigmoid D2cc, and bladder D2cc, respectively, which was unseen during the training.
CONCLUSION: Deep CNN-based dose estimation is a promising method for patient-specific brachytherapy dosimetry. Desired radiation quantities can be obtained with accuracies arbitrarily close to those of the source MC algorithm, but with much faster computation times. The idea behind deep CNN-based dose estimation can be safely extended to other radiation sources and tumor sites by following a similar training process.},
keywords = {Brachytherapy, Colon, Computer, Computer-Assisted, Deep Learning, Female, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Neural Networks, Organs at Risk, Prostate, Prostatic Neoplasms, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Retrospective Studies, Sigmoid, Urinary Bladder, Uterine Cervical Neoplasms},
pubstate = {published},
tppubtype = {article}
}
PURPOSE: Detailed and accurate absorbed dose calculations from radiation interactions with the human body can be obtained with the Monte Carlo (MC) method. However, the MC method can be slow for use in the time-sensitive clinical workflow. The aim of this study was to provide a solution to the accuracy-time trade-off for 192Ir-based high-dose-rate brachytherapy by using deep learning.
METHODS AND MATERIALS: RapidBrachyDL, a 3-dimensional deep convolutional neural network (CNN) model, is proposed to predict dose distributions calculated with the MC method given a patient’s computed tomography images, contours of clinical target volume (CTV) and organs at risk, and treatment plan. Sixty-one patients with prostate cancer and 10 patients with cervical cancer were included in this study, with data from 47 patients with prostate cancer being used to train the model.
RESULTS: Compared with ground truth MC simulations, the predicted dose distributions by RapidBrachyDL showed a consistent shape in the dose-volume histograms (DVHs); comparable DVH dosimetric indices including 0.73% difference for prostate CTV D90, 1.1% for rectum D2cc, 1.45% for urethra D0.1cc, and 1.05% for bladder D2cc; and substantially smaller prediction time, acceleration by a factor of 300. RapidBrachyDL also demonstrated good generalization to cervical data with 1.73%, 2.46%, 1.68%, and 1.74% difference for CTV D90, rectum D2cc, sigmoid D2cc, and bladder D2cc, respectively, which was unseen during the training.
CONCLUSION: Deep CNN-based dose estimation is a promising method for patient-specific brachytherapy dosimetry. Desired radiation quantities can be obtained with accuracies arbitrarily close to those of the source MC algorithm, but with much faster computation times. The idea behind deep CNN-based dose estimation can be safely extended to other radiation sources and tumor sites by following a similar training process. Famulari, Gabriel; Alfieri, Joanne; Duclos, Marie; Vuong, Té; Enger, Shirin A.
Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy? Journal Article
In: Brachytherapy, vol. 19, no. 2, pp. 255–263, 2020, ISSN: 1873-1449.
Abstract | Links | BibTeX | Tags: Bone and Bones, Brachytherapy, Cobalt Radioisotopes, Computer Simulation, Computer-Assisted, Dose calculation, Gadolinium, Humans, Intermediate-energy source, Iridium Radioisotopes, Male, Monte Carlo, Prostatic Neoplasms, Radiation Dosage, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Selenium Radioisotopes, Tissue composition, Tongue Neoplasms, Ytterbium
@article{famulari_can_2020,
title = {Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy?},
author = {Gabriel Famulari and Joanne Alfieri and Marie Duclos and Té Vuong and Shirin A. Enger},
doi = {10.1016/j.brachy.2019.12.004},
issn = {1873-1449},
year = {2020},
date = {2020-04-01},
journal = {Brachytherapy},
volume = {19},
number = {2},
pages = {255--263},
abstract = {PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m).
RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.},
keywords = {Bone and Bones, Brachytherapy, Cobalt Radioisotopes, Computer Simulation, Computer-Assisted, Dose calculation, Gadolinium, Humans, Intermediate-energy source, Iridium Radioisotopes, Male, Monte Carlo, Prostatic Neoplasms, Radiation Dosage, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Selenium Radioisotopes, Tissue composition, Tongue Neoplasms, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m).
RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor. Morcos, Marc; Enger, Shirin A.
Monte Carlo dosimetry study of novel rotating MRI-compatible shielded tandems for intensity modulated cervix brachytherapy Journal Article
In: Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), vol. 71, pp. 178–184, 2020, ISSN: 1724-191X.
Abstract | Links | BibTeX | Tags: Anisotropy, Brachytherapy, Female, Humans, Image-guided cervix brachytherapy, Intensity modulated brachytherapy, Intensity-Modulated, Iridium Radioisotopes, Magnetic Resonance Imaging, Monte Carlo based dosimetry, Monte Carlo Method, MRI-guided GYN brachytherapy, Radiometry, Radiotherapy, Selenium Radioisotopes, Uterine Cervical Neoplasms, Ytterbium
@article{morcos_monte_2020,
title = {Monte Carlo dosimetry study of novel rotating MRI-compatible shielded tandems for intensity modulated cervix brachytherapy},
author = {Marc Morcos and Shirin A. Enger},
doi = {10.1016/j.ejmp.2020.02.014},
issn = {1724-191X},
year = {2020},
date = {2020-03-01},
journal = {Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB)},
volume = {71},
pages = {178--184},
abstract = {PURPOSE: Intensity modulated brachytherapy (IMBT) with rotating metal shields enables dose modulation that can better conform to the tumor while reducing OAR doses. In this work, we investigate novel rotating shields, compatible with MRI-compatible tandems used for cervix brachytherapy. Three unique shields were evaluated using the traditional 192Ir source. Additionally, 75Se and 169Yb isotopes were investigated as alternative sources.
METHODS: Three different IMBT shields were modeled and simulated in RapidBrachyMCTPS. Each tungsten shield was designed to fit inside a 6 mm-wide MRI-compatible tandem. The active core of the source was replaced with 192Ir, 75Se and 169Yb. Transmission factors (TFs) were calculated and defined as the dose ratio at 1 cm on opposite sides of the shielded tandem on the transverse plane. Polar and azimuthal anisotropy plots were extracted from simulations. Dose homogeneities V200%V100% were calculated for all radionuclide-shield combinations.
RESULTS: TFs are favorable for IMBT and ranged between 12.9% and 32.2% for 192Ir, 4.0%-16.1% for 75Se and 1.2-6.4% for 169Yb for all shield designs. Average beam-widths in the polar and azimuthal directions were reduced to the range of 42°-112° and 27°-107°, respectively, for all shield-radionuclide combinations. Dose homogeneities for all the radionuclide-shield combinations were within 12% of the non-IMBT tandem.
CONCLUSIONS: This study has quantitatively assessed the influence of various rotating cervical cancer-specific IMBT tandem shields on dosimetry. The dynamic single-channel shields and narrow beam-widths in the polar and azimuthal direction give rise to highly anisotropic distributions. Intermediate-to-high energy radionuclides, 75Se and 169Yb substantially improve the modulation capacity of IMBT and pave the way for treating large and complex cervical cancer without interstitial needle implantation.},
keywords = {Anisotropy, Brachytherapy, Female, Humans, Image-guided cervix brachytherapy, Intensity modulated brachytherapy, Intensity-Modulated, Iridium Radioisotopes, Magnetic Resonance Imaging, Monte Carlo based dosimetry, Monte Carlo Method, MRI-guided GYN brachytherapy, Radiometry, Radiotherapy, Selenium Radioisotopes, Uterine Cervical Neoplasms, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
PURPOSE: Intensity modulated brachytherapy (IMBT) with rotating metal shields enables dose modulation that can better conform to the tumor while reducing OAR doses. In this work, we investigate novel rotating shields, compatible with MRI-compatible tandems used for cervix brachytherapy. Three unique shields were evaluated using the traditional 192Ir source. Additionally, 75Se and 169Yb isotopes were investigated as alternative sources.
METHODS: Three different IMBT shields were modeled and simulated in RapidBrachyMCTPS. Each tungsten shield was designed to fit inside a 6 mm-wide MRI-compatible tandem. The active core of the source was replaced with 192Ir, 75Se and 169Yb. Transmission factors (TFs) were calculated and defined as the dose ratio at 1 cm on opposite sides of the shielded tandem on the transverse plane. Polar and azimuthal anisotropy plots were extracted from simulations. Dose homogeneities V200%V100% were calculated for all radionuclide-shield combinations.
RESULTS: TFs are favorable for IMBT and ranged between 12.9% and 32.2% for 192Ir, 4.0%-16.1% for 75Se and 1.2-6.4% for 169Yb for all shield designs. Average beam-widths in the polar and azimuthal directions were reduced to the range of 42°-112° and 27°-107°, respectively, for all shield-radionuclide combinations. Dose homogeneities for all the radionuclide-shield combinations were within 12% of the non-IMBT tandem.
CONCLUSIONS: This study has quantitatively assessed the influence of various rotating cervical cancer-specific IMBT tandem shields on dosimetry. The dynamic single-channel shields and narrow beam-widths in the polar and azimuthal direction give rise to highly anisotropic distributions. Intermediate-to-high energy radionuclides, 75Se and 169Yb substantially improve the modulation capacity of IMBT and pave the way for treating large and complex cervical cancer without interstitial needle implantation.2019
Shoemaker, Tristan; Vuong, Té; Glickman, Harry; Kaifi, Samar; Famulari, Gabriel; Enger, Shirin A.
Dosimetric Considerations for Ytterbium-169, Selenium-75, and Iridium-192 Radioisotopes in High-Dose-Rate Endorectal Brachytherapy Journal Article
In: International Journal of Radiation Oncology, Biology, Physics, vol. 105, no. 4, pp. 875–883, 2019, ISSN: 1879-355X.
Abstract | Links | BibTeX | Tags: Brachytherapy, Femur, Humans, Iridium Radioisotopes, Monte Carlo Method, Organs at Risk, Pelvic Bones, Radioisotopes, Radiotherapy Dosage, Rectal Neoplasms, Rectum, Selenium Radioisotopes, Tomography, Urinary Bladder, X-Ray Computed, Ytterbium
@article{shoemaker_dosimetric_2019,
title = {Dosimetric Considerations for Ytterbium-169, Selenium-75, and Iridium-192 Radioisotopes in High-Dose-Rate Endorectal Brachytherapy},
author = {Tristan Shoemaker and Té Vuong and Harry Glickman and Samar Kaifi and Gabriel Famulari and Shirin A. Enger},
doi = {10.1016/j.ijrobp.2019.07.003},
issn = {1879-355X},
year = {2019},
date = {2019-11-01},
journal = {International Journal of Radiation Oncology, Biology, Physics},
volume = {105},
number = {4},
pages = {875--883},
abstract = {PURPOSE: To investigate differences between prescribed and postimplant calculated dose in 192Ir high-dose-rate endorectal brachytherapy (HDR-EBT) by evaluating dose to clinical target volume (CTV) and organs at risk (OARs) calculated with a Monte Carlo-based dose calculation software, RapidBrachyMC. In addition, dose coverage, conformity, and homogeneity were compared among the radionuclides 192Ir, 75Se, and 169Yb for use in HDR-EBT.
METHODS AND MATERIALS: Postimplant dosimetry was evaluated using 23 computed tomography (CT) images from patients treated with HDR-EBT using the 192Ir microSelectron v2 (Elekta AB, Stockholm, Sweden) source and the Intracavitary Mold Applicator Set (Elekta AB, Stockholm, Sweden), which is a flexible applicator capable of fitting a tungsten rod for OAR shielding. Four tissue segmentation schemes were evaluated: (1) TG-43 formalism, (2) materials and nominal densities assigned to contours of foreign objects, (3) materials and nominal densities assigned to contoured organs in addition to foreign objects, and (4) materials specified as in (3) but with voxel mass densities derived from CT Hounsfield units. Clinical plans optimized for 192Ir were used, with the results for 75Se and 169Yb normalized to the D90 of the 192Ir clinical plan. RESULTS: In comparison to segmentation scheme 4, TG-43-based dosimetry overestimates CTV D90 by 6% (P = .00003), rectum D50 by 24% (P = .00003), and pelvic bone D50 by 5% (P = .00003) for 192Ir. For 169Yb, CTV D90 is overestimated by 17% (P = .00003) and rectum D50 by 39% (P = .00003), and pelvic bone D50 is significantly underestimated by 27% (P = .007). Postimplant dosimetry calculations also showed that a 169Yb source would give 20% (P = .00003) lower rectum V60 and 17% (P = .00008) lower rectum D50.
CONCLUSIONS: Ignoring high-Z materials in dose calculation contributes to inaccuracies that may lead to suboptimal dose optimization and disagreement between prescribed and calculated dose. This is especially important for low-energy radionuclides. Our results also show that with future magnetic resonance imaging-based treatment planning, loss of CT density data will only affect calculated dose in nonbone OARs by 2% or less and bone OARs by 13% or less across all sources if material composition and nominal mass densities are correctly assigned.},
keywords = {Brachytherapy, Femur, Humans, Iridium Radioisotopes, Monte Carlo Method, Organs at Risk, Pelvic Bones, Radioisotopes, Radiotherapy Dosage, Rectal Neoplasms, Rectum, Selenium Radioisotopes, Tomography, Urinary Bladder, X-Ray Computed, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
PURPOSE: To investigate differences between prescribed and postimplant calculated dose in 192Ir high-dose-rate endorectal brachytherapy (HDR-EBT) by evaluating dose to clinical target volume (CTV) and organs at risk (OARs) calculated with a Monte Carlo-based dose calculation software, RapidBrachyMC. In addition, dose coverage, conformity, and homogeneity were compared among the radionuclides 192Ir, 75Se, and 169Yb for use in HDR-EBT.
METHODS AND MATERIALS: Postimplant dosimetry was evaluated using 23 computed tomography (CT) images from patients treated with HDR-EBT using the 192Ir microSelectron v2 (Elekta AB, Stockholm, Sweden) source and the Intracavitary Mold Applicator Set (Elekta AB, Stockholm, Sweden), which is a flexible applicator capable of fitting a tungsten rod for OAR shielding. Four tissue segmentation schemes were evaluated: (1) TG-43 formalism, (2) materials and nominal densities assigned to contours of foreign objects, (3) materials and nominal densities assigned to contoured organs in addition to foreign objects, and (4) materials specified as in (3) but with voxel mass densities derived from CT Hounsfield units. Clinical plans optimized for 192Ir were used, with the results for 75Se and 169Yb normalized to the D90 of the 192Ir clinical plan. RESULTS: In comparison to segmentation scheme 4, TG-43-based dosimetry overestimates CTV D90 by 6% (P = .00003), rectum D50 by 24% (P = .00003), and pelvic bone D50 by 5% (P = .00003) for 192Ir. For 169Yb, CTV D90 is overestimated by 17% (P = .00003) and rectum D50 by 39% (P = .00003), and pelvic bone D50 is significantly underestimated by 27% (P = .007). Postimplant dosimetry calculations also showed that a 169Yb source would give 20% (P = .00003) lower rectum V60 and 17% (P = .00008) lower rectum D50.
CONCLUSIONS: Ignoring high-Z materials in dose calculation contributes to inaccuracies that may lead to suboptimal dose optimization and disagreement between prescribed and calculated dose. This is especially important for low-energy radionuclides. Our results also show that with future magnetic resonance imaging-based treatment planning, loss of CT density data will only affect calculated dose in nonbone OARs by 2% or less and bone OARs by 13% or less across all sources if material composition and nominal mass densities are correctly assigned.2018
Famulari, Gabriel; Pater, Piotr; Enger, Shirin A.
Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study Journal Article
In: International Journal of Radiation Oncology, Biology, Physics, vol. 100, no. 1, pp. 270–277, 2018, ISSN: 1879-355X.
Abstract | Links | BibTeX | Tags: Brachytherapy, Gadolinium, Imaging, Iodine Radioisotopes, Iridium Radioisotopes, Linear Energy Transfer, Monte Carlo Method, Phantoms, Radioisotopes, Radiometry, Radiotherapy Dosage, Relative Biological Effectiveness, Selenium Radioisotopes, Ytterbium
@article{famulari_microdosimetric_2018,
title = {Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study},
author = {Gabriel Famulari and Piotr Pater and Shirin A. Enger},
doi = {10.1016/j.ijrobp.2017.09.040},
issn = {1879-355X},
year = {2018},
date = {2018-01-01},
journal = {International Journal of Radiation Oncology, Biology, Physics},
volume = {100},
number = {1},
pages = {270--277},
abstract = {PURPOSE: Radioisotopes such as 75Se, 169Yb, and 153Gd have photon energy spectra and half-lives that make them excellent candidates as alternatives to 192Ir for high-dose-rate brachytherapy. The aim of the present study was to evaluate the relative biological effectiveness (RBE) of current (192Ir, 125I, 103Pd) and alternative (75Se, 169Yb, 153Gd) brachytherapy radionuclides using Monte Carlo simulations of lineal energy distributions.
METHODS AND MATERIALS: Brachytherapy sources (microSelectron v2 [192Ir, 75Se, 169Yb, 153Gd], SelectSeed [125I], and TheraSeed [103Pd]) were placed in the center of a spherical water phantom with a radius of 40 cm using the Geant4 Monte Carlo simulation toolkit. The kinetic energy of all primary, scattered, and fluorescence photons interacting in a scoring volume were tallied at various depths from the source. Electron tracks were generated by sampling the photon interaction spectrum and tracking all the interactions down to 10 eV using the event-by-event capabilities of the Geant4-DNA models. The dose mean lineal energy (y¯D) values were obtained through random sampling of transfer points and overlaying spherical scoring volumes within the associated volume of the tracks. The scoring volume diameter was determined by fitting the y¯D ratio for 125I to its observed RBE.
RESULTS: y¯D increased with the increasing distance from the source for 192Ir, 75Se, and 169Yb, remained constant for 153Gd and 125I, and decreased for 103Pd. The diameter at which the y¯D ratio coincided with the RBE of 1.15 to 1.20 for 125I was ∼25 to 40 nm. The RBE (reference 1 MeV photons) at high doses and dose rates for 192Ir, 75Se, 169Yb, 153Gd, 125I, and 103Pd was 1.028 to 1.034, 1.05 to 1.07, 1.12 to 1.15, 1.16 to 1.21, 1.15 to 1.20, and 1.17 to 1.22, respectively.
CONCLUSIONS: The radiation quality of the radionuclides under investigation was greater than that of high-energy photons. The present study has provided a set of values to modify the prescription doses for brachytherapy to account for the variation in radiation quality among radionuclides.},
keywords = {Brachytherapy, Gadolinium, Imaging, Iodine Radioisotopes, Iridium Radioisotopes, Linear Energy Transfer, Monte Carlo Method, Phantoms, Radioisotopes, Radiometry, Radiotherapy Dosage, Relative Biological Effectiveness, Selenium Radioisotopes, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
PURPOSE: Radioisotopes such as 75Se, 169Yb, and 153Gd have photon energy spectra and half-lives that make them excellent candidates as alternatives to 192Ir for high-dose-rate brachytherapy. The aim of the present study was to evaluate the relative biological effectiveness (RBE) of current (192Ir, 125I, 103Pd) and alternative (75Se, 169Yb, 153Gd) brachytherapy radionuclides using Monte Carlo simulations of lineal energy distributions.
METHODS AND MATERIALS: Brachytherapy sources (microSelectron v2 [192Ir, 75Se, 169Yb, 153Gd], SelectSeed [125I], and TheraSeed [103Pd]) were placed in the center of a spherical water phantom with a radius of 40 cm using the Geant4 Monte Carlo simulation toolkit. The kinetic energy of all primary, scattered, and fluorescence photons interacting in a scoring volume were tallied at various depths from the source. Electron tracks were generated by sampling the photon interaction spectrum and tracking all the interactions down to 10 eV using the event-by-event capabilities of the Geant4-DNA models. The dose mean lineal energy (y¯D) values were obtained through random sampling of transfer points and overlaying spherical scoring volumes within the associated volume of the tracks. The scoring volume diameter was determined by fitting the y¯D ratio for 125I to its observed RBE.
RESULTS: y¯D increased with the increasing distance from the source for 192Ir, 75Se, and 169Yb, remained constant for 153Gd and 125I, and decreased for 103Pd. The diameter at which the y¯D ratio coincided with the RBE of 1.15 to 1.20 for 125I was ∼25 to 40 nm. The RBE (reference 1 MeV photons) at high doses and dose rates for 192Ir, 75Se, 169Yb, 153Gd, 125I, and 103Pd was 1.028 to 1.034, 1.05 to 1.07, 1.12 to 1.15, 1.16 to 1.21, 1.15 to 1.20, and 1.17 to 1.22, respectively.
CONCLUSIONS: The radiation quality of the radionuclides under investigation was greater than that of high-energy photons. The present study has provided a set of values to modify the prescription doses for brachytherapy to account for the variation in radiation quality among radionuclides.2014
Adams, Quentin E.; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Enger, Shirin A.; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.
Interstitial rotating shield brachytherapy for prostate cancer Journal Article
In: Medical Physics, vol. 41, no. 5, pp. 051703, 2014, ISSN: 2473-4209.
Abstract | Links | BibTeX | Tags: Brachytherapy, Catheters, Computer-Assisted, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Needles, Nickel, Platinum Compounds, Prostatic Neoplasms, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Time Factors, Titanium, Urethra, Urinary Bladder
@article{adams_interstitial_2014,
title = {Interstitial rotating shield brachytherapy for prostate cancer},
author = {Quentin E. Adams and Jinghzu Xu and Elizabeth K. Breitbach and Xing Li and Shirin A. Enger and William R. Rockey and Yusung Kim and Xiaodong Wu and Ryan T. Flynn},
doi = {10.1118/1.4870441},
issn = {2473-4209},
year = {2014},
date = {2014-05-01},
journal = {Medical Physics},
volume = {41},
number = {5},
pages = {051703},
abstract = {PURPOSE: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT).
METHODS: A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%.
RESULTS: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources.
CONCLUSIONS: For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.},
keywords = {Brachytherapy, Catheters, Computer-Assisted, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Needles, Nickel, Platinum Compounds, Prostatic Neoplasms, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Time Factors, Titanium, Urethra, Urinary Bladder},
pubstate = {published},
tppubtype = {article}
}
PURPOSE: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT).
METHODS: A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%.
RESULTS: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources.
CONCLUSIONS: For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.2013
Enger, Shirin A.; Fisher, Darrell R.; Flynn, Ryan T.
Gadolinium-153 as a brachytherapy isotope Journal Article
In: Physics in Medicine and Biology, vol. 58, no. 4, pp. 957–964, 2013, ISSN: 1361-6560.
Abstract | Links | BibTeX | Tags: Anisotropy, Brachytherapy, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Photons, Prostatic Neoplasms, Radiation, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Scattering
@article{enger_gadolinium-153_2013,
title = {Gadolinium-153 as a brachytherapy isotope},
author = {Shirin A. Enger and Darrell R. Fisher and Ryan T. Flynn},
doi = {10.1088/0031-9155/58/4/957},
issn = {1361-6560},
year = {2013},
date = {2013-02-01},
journal = {Physics in Medicine and Biology},
volume = {58},
number = {4},
pages = {957--964},
abstract = {The purpose of this work was to present the fundamental dosimetric characteristics of a hypothetical (153)Gd brachytherapy source using the AAPM TG-43U1 dose-calculation formalism. Gadolinium-153 is an intermediate-energy isotope that emits 40-100 keV photons with a half-life of 242 days. The rationale for considering (153)Gd as a brachytherapy source is for its potential of patient specific shielding and to enable reduced personnel shielding requirements relative to (192)Ir, and as an isotope for interstitial rotating shield brachytherapy (I-RSBT). A hypothetical (153)Gd brachytherapy source with an active core of 0.84 mm diameter, 10 mm length and specific activity of 5.55 TBq of (153)Gd per gram of Gd was simulated with Geant4. The encapsulation material was stainless steel with a thickness of 0.08 mm. The radial dose function, anisotropy function and photon spectrum in water were calculated for the (153)Gd source. The simulated (153)Gd source had an activity of 242 GBq and a dose rate in water 1 cm off axis of 13.12 Gy h(-1), indicating that it would be suitable as a low-dose-rate or pulsed-dose-rate brachytherapy source. The beta particles emitted have low enough energies to be absorbed in the source encapsulation. Gadolinium-153 has an increasing radial dose function due to multiple scatter of low-energy photons. Scattered photon dose takes over with distance from the source and contributes to the majority of the absorbed dose. The anisotropy function of the (153)Gd source decreases at low polar angles, as a result of the long active core. The source is less anisotropic at polar angles away from the longitudinal axes. The anisotropy function increases with increasing distance. The (153)Gd source considered would be suitable as an intermediate-energy low-dose-rate or pulsed-dose-rate brachytherapy source. The source could provide a means for I-RSBT delivery and enable brachytherapy treatments with patient specific shielding and reduced personnel shielding requirements relative to (192)Ir.},
keywords = {Anisotropy, Brachytherapy, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Photons, Prostatic Neoplasms, Radiation, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Scattering},
pubstate = {published},
tppubtype = {article}
}
The purpose of this work was to present the fundamental dosimetric characteristics of a hypothetical (153)Gd brachytherapy source using the AAPM TG-43U1 dose-calculation formalism. Gadolinium-153 is an intermediate-energy isotope that emits 40-100 keV photons with a half-life of 242 days. The rationale for considering (153)Gd as a brachytherapy source is for its potential of patient specific shielding and to enable reduced personnel shielding requirements relative to (192)Ir, and as an isotope for interstitial rotating shield brachytherapy (I-RSBT). A hypothetical (153)Gd brachytherapy source with an active core of 0.84 mm diameter, 10 mm length and specific activity of 5.55 TBq of (153)Gd per gram of Gd was simulated with Geant4. The encapsulation material was stainless steel with a thickness of 0.08 mm. The radial dose function, anisotropy function and photon spectrum in water were calculated for the (153)Gd source. The simulated (153)Gd source had an activity of 242 GBq and a dose rate in water 1 cm off axis of 13.12 Gy h(-1), indicating that it would be suitable as a low-dose-rate or pulsed-dose-rate brachytherapy source. The beta particles emitted have low enough energies to be absorbed in the source encapsulation. Gadolinium-153 has an increasing radial dose function due to multiple scatter of low-energy photons. Scattered photon dose takes over with distance from the source and contributes to the majority of the absorbed dose. The anisotropy function of the (153)Gd source decreases at low polar angles, as a result of the long active core. The source is less anisotropic at polar angles away from the longitudinal axes. The anisotropy function increases with increasing distance. The (153)Gd source considered would be suitable as an intermediate-energy low-dose-rate or pulsed-dose-rate brachytherapy source. The source could provide a means for I-RSBT delivery and enable brachytherapy treatments with patient specific shielding and reduced personnel shielding requirements relative to (192)Ir.
Journal Articles
2021
Morcos, Marc; Viswanathan, Akila N.; Enger, Shirin A.
In: Medical Physics, vol. 48, no. 5, pp. 2604–2613, 2021, ISSN: 2473-4209.
Abstract | Links | BibTeX | Tags: Brachytherapy, Computer-Assisted, dynamic shield brachytherapy, Female, Humans, IMBT, Intensity modulated brachytherapy, Iridium Radioisotopes, Monte Carlo Method, MR-guided brachytherapy, Radiotherapy Dosage, Radiotherapy Planning, rotating shield brachytherapy, RSBT, Uterine Cervical Neoplasms
@article{morcos_impact_2021,
title = {On the impact of absorbed dose specification, tissue heterogeneities, and applicator heterogeneities on Monte Carlo-based dosimetry of Ir-192, Se-75, and Yb-169 in conventional and intensity-modulated brachytherapy for the treatment of cervical cancer},
author = {Marc Morcos and Akila N. Viswanathan and Shirin A. Enger},
doi = {10.1002/mp.14802},
issn = {2473-4209},
year = {2021},
date = {2021-05-01},
journal = {Medical Physics},
volume = {48},
number = {5},
pages = {2604--2613},
abstract = {PURPOSE: The purpose of this study was to evaluate the impact of dose reporting schemes and tissue/applicator heterogeneities for 192 Ir-, 75 Se-, and 169 Yb-based MRI-guided conventional and intensity-modulated brachytherapy. METHODS AND MATERIALS: Treatment plans using a variety of dose reporting and tissue/applicator segmentation schemes were generated for a cohort (n = 10) of cervical cancer patients treated with 192 Ir-based Venezia brachytherapy. Dose calculations were performed using RapidBrachyMCTPS, a Geant4-based research Monte Carlo treatment planning system. Ultimately, five dose calculation scenarios were evaluated: (a) dose to water in water (Dw,w ); (b) Dw,w taking the applicator material into consideration (Dw,wApp ); (c) dose to water in medium (Dw,m ); (d and e) dose to medium in medium with mass densities assigned either nominally per structure (Dm,m (Nom) ) or voxel-by-voxel (Dm,m ).
RESULTS: Ignoring the plastic Venezia applicator (Dw,wApp ) overestimates Dm,m by up to 1% (average) with high energy source (192 Ir and 75 Se) and up to 2% with 169 Yb. Scoring dose to water (Dw,wApp or Dw,m ) generally overestimates dose and this effect increases with decreasing photon energy. Reporting dose other than Dm,m (or Dm,m Nom ) for 169 Yb-based conventional and intensity-modulated brachytherapy leads to a simultaneous overestimation (up to 4%) of CTVHR D90 and underestimation (up to 2%) of bladder D2cc due to a significant dip in the mass-energy absorption ratios at the depths of nearby targets and OARs. Using a nominal mass-density assignment per structure, rather than a CT-derived voxel-by-voxel assignment for MRI-guided brachytherapy, amounts to a dose error up to 1% for all radionuclides considered.
CONCLUSIONS: The effects of the considered dose reporting schemes trend correspondingly between conventional and intensity-modulated brachytherapy. In the absence of CT-derived mass densities, MRI-only-based dosimetry can adequately approximate Dm,m by assigning nominal mass densities to structures. Tissue and applicator heterogeneities do not significantly impact dosimetry for 192 Ir and 75 Se, but do for 169 Yb; dose reporting must be explicitly defined since Dw,m and Dw,w may overstate the dosimetric benefits.},
keywords = {Brachytherapy, Computer-Assisted, dynamic shield brachytherapy, Female, Humans, IMBT, Intensity modulated brachytherapy, Iridium Radioisotopes, Monte Carlo Method, MR-guided brachytherapy, Radiotherapy Dosage, Radiotherapy Planning, rotating shield brachytherapy, RSBT, Uterine Cervical Neoplasms},
pubstate = {published},
tppubtype = {article}
}
RESULTS: Ignoring the plastic Venezia applicator (Dw,wApp ) overestimates Dm,m by up to 1% (average) with high energy source (192 Ir and 75 Se) and up to 2% with 169 Yb. Scoring dose to water (Dw,wApp or Dw,m ) generally overestimates dose and this effect increases with decreasing photon energy. Reporting dose other than Dm,m (or Dm,m Nom ) for 169 Yb-based conventional and intensity-modulated brachytherapy leads to a simultaneous overestimation (up to 4%) of CTVHR D90 and underestimation (up to 2%) of bladder D2cc due to a significant dip in the mass-energy absorption ratios at the depths of nearby targets and OARs. Using a nominal mass-density assignment per structure, rather than a CT-derived voxel-by-voxel assignment for MRI-guided brachytherapy, amounts to a dose error up to 1% for all radionuclides considered.
CONCLUSIONS: The effects of the considered dose reporting schemes trend correspondingly between conventional and intensity-modulated brachytherapy. In the absence of CT-derived mass densities, MRI-only-based dosimetry can adequately approximate Dm,m by assigning nominal mass densities to structures. Tissue and applicator heterogeneities do not significantly impact dosimetry for 192 Ir and 75 Se, but do for 169 Yb; dose reporting must be explicitly defined since Dw,m and Dw,w may overstate the dosimetric benefits.
2020
Mao, Ximeng; Pineau, Joelle; Keyes, Roy; Enger, Shirin A.
RapidBrachyDL: Rapid Radiation Dose Calculations in Brachytherapy Via Deep Learning Journal Article
In: International Journal of Radiation Oncology, Biology, Physics, vol. 108, no. 3, pp. 802–812, 2020, ISSN: 1879-355X.
Abstract | Links | BibTeX | Tags: Brachytherapy, Colon, Computer, Computer-Assisted, Deep Learning, Female, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Neural Networks, Organs at Risk, Prostate, Prostatic Neoplasms, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Retrospective Studies, Sigmoid, Urinary Bladder, Uterine Cervical Neoplasms
@article{mao_rapidbrachydl_2020,
title = {RapidBrachyDL: Rapid Radiation Dose Calculations in Brachytherapy Via Deep Learning},
author = {Ximeng Mao and Joelle Pineau and Roy Keyes and Shirin A. Enger},
doi = {10.1016/j.ijrobp.2020.04.045},
issn = {1879-355X},
year = {2020},
date = {2020-11-01},
journal = {International Journal of Radiation Oncology, Biology, Physics},
volume = {108},
number = {3},
pages = {802--812},
abstract = {PURPOSE: Detailed and accurate absorbed dose calculations from radiation interactions with the human body can be obtained with the Monte Carlo (MC) method. However, the MC method can be slow for use in the time-sensitive clinical workflow. The aim of this study was to provide a solution to the accuracy-time trade-off for 192Ir-based high-dose-rate brachytherapy by using deep learning.
METHODS AND MATERIALS: RapidBrachyDL, a 3-dimensional deep convolutional neural network (CNN) model, is proposed to predict dose distributions calculated with the MC method given a patient's computed tomography images, contours of clinical target volume (CTV) and organs at risk, and treatment plan. Sixty-one patients with prostate cancer and 10 patients with cervical cancer were included in this study, with data from 47 patients with prostate cancer being used to train the model.
RESULTS: Compared with ground truth MC simulations, the predicted dose distributions by RapidBrachyDL showed a consistent shape in the dose-volume histograms (DVHs); comparable DVH dosimetric indices including 0.73% difference for prostate CTV D90, 1.1% for rectum D2cc, 1.45% for urethra D0.1cc, and 1.05% for bladder D2cc; and substantially smaller prediction time, acceleration by a factor of 300. RapidBrachyDL also demonstrated good generalization to cervical data with 1.73%, 2.46%, 1.68%, and 1.74% difference for CTV D90, rectum D2cc, sigmoid D2cc, and bladder D2cc, respectively, which was unseen during the training.
CONCLUSION: Deep CNN-based dose estimation is a promising method for patient-specific brachytherapy dosimetry. Desired radiation quantities can be obtained with accuracies arbitrarily close to those of the source MC algorithm, but with much faster computation times. The idea behind deep CNN-based dose estimation can be safely extended to other radiation sources and tumor sites by following a similar training process.},
keywords = {Brachytherapy, Colon, Computer, Computer-Assisted, Deep Learning, Female, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Neural Networks, Organs at Risk, Prostate, Prostatic Neoplasms, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Retrospective Studies, Sigmoid, Urinary Bladder, Uterine Cervical Neoplasms},
pubstate = {published},
tppubtype = {article}
}
METHODS AND MATERIALS: RapidBrachyDL, a 3-dimensional deep convolutional neural network (CNN) model, is proposed to predict dose distributions calculated with the MC method given a patient’s computed tomography images, contours of clinical target volume (CTV) and organs at risk, and treatment plan. Sixty-one patients with prostate cancer and 10 patients with cervical cancer were included in this study, with data from 47 patients with prostate cancer being used to train the model.
RESULTS: Compared with ground truth MC simulations, the predicted dose distributions by RapidBrachyDL showed a consistent shape in the dose-volume histograms (DVHs); comparable DVH dosimetric indices including 0.73% difference for prostate CTV D90, 1.1% for rectum D2cc, 1.45% for urethra D0.1cc, and 1.05% for bladder D2cc; and substantially smaller prediction time, acceleration by a factor of 300. RapidBrachyDL also demonstrated good generalization to cervical data with 1.73%, 2.46%, 1.68%, and 1.74% difference for CTV D90, rectum D2cc, sigmoid D2cc, and bladder D2cc, respectively, which was unseen during the training.
CONCLUSION: Deep CNN-based dose estimation is a promising method for patient-specific brachytherapy dosimetry. Desired radiation quantities can be obtained with accuracies arbitrarily close to those of the source MC algorithm, but with much faster computation times. The idea behind deep CNN-based dose estimation can be safely extended to other radiation sources and tumor sites by following a similar training process.
Famulari, Gabriel; Alfieri, Joanne; Duclos, Marie; Vuong, Té; Enger, Shirin A.
Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy? Journal Article
In: Brachytherapy, vol. 19, no. 2, pp. 255–263, 2020, ISSN: 1873-1449.
Abstract | Links | BibTeX | Tags: Bone and Bones, Brachytherapy, Cobalt Radioisotopes, Computer Simulation, Computer-Assisted, Dose calculation, Gadolinium, Humans, Intermediate-energy source, Iridium Radioisotopes, Male, Monte Carlo, Prostatic Neoplasms, Radiation Dosage, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Selenium Radioisotopes, Tissue composition, Tongue Neoplasms, Ytterbium
@article{famulari_can_2020,
title = {Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy?},
author = {Gabriel Famulari and Joanne Alfieri and Marie Duclos and Té Vuong and Shirin A. Enger},
doi = {10.1016/j.brachy.2019.12.004},
issn = {1873-1449},
year = {2020},
date = {2020-04-01},
journal = {Brachytherapy},
volume = {19},
number = {2},
pages = {255--263},
abstract = {PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m).
RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.},
keywords = {Bone and Bones, Brachytherapy, Cobalt Radioisotopes, Computer Simulation, Computer-Assisted, Dose calculation, Gadolinium, Humans, Intermediate-energy source, Iridium Radioisotopes, Male, Monte Carlo, Prostatic Neoplasms, Radiation Dosage, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Selenium Radioisotopes, Tissue composition, Tongue Neoplasms, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (textless5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources.
CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.
Morcos, Marc; Enger, Shirin A.
Monte Carlo dosimetry study of novel rotating MRI-compatible shielded tandems for intensity modulated cervix brachytherapy Journal Article
In: Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), vol. 71, pp. 178–184, 2020, ISSN: 1724-191X.
Abstract | Links | BibTeX | Tags: Anisotropy, Brachytherapy, Female, Humans, Image-guided cervix brachytherapy, Intensity modulated brachytherapy, Intensity-Modulated, Iridium Radioisotopes, Magnetic Resonance Imaging, Monte Carlo based dosimetry, Monte Carlo Method, MRI-guided GYN brachytherapy, Radiometry, Radiotherapy, Selenium Radioisotopes, Uterine Cervical Neoplasms, Ytterbium
@article{morcos_monte_2020,
title = {Monte Carlo dosimetry study of novel rotating MRI-compatible shielded tandems for intensity modulated cervix brachytherapy},
author = {Marc Morcos and Shirin A. Enger},
doi = {10.1016/j.ejmp.2020.02.014},
issn = {1724-191X},
year = {2020},
date = {2020-03-01},
journal = {Physica medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB)},
volume = {71},
pages = {178--184},
abstract = {PURPOSE: Intensity modulated brachytherapy (IMBT) with rotating metal shields enables dose modulation that can better conform to the tumor while reducing OAR doses. In this work, we investigate novel rotating shields, compatible with MRI-compatible tandems used for cervix brachytherapy. Three unique shields were evaluated using the traditional 192Ir source. Additionally, 75Se and 169Yb isotopes were investigated as alternative sources.
METHODS: Three different IMBT shields were modeled and simulated in RapidBrachyMCTPS. Each tungsten shield was designed to fit inside a 6 mm-wide MRI-compatible tandem. The active core of the source was replaced with 192Ir, 75Se and 169Yb. Transmission factors (TFs) were calculated and defined as the dose ratio at 1 cm on opposite sides of the shielded tandem on the transverse plane. Polar and azimuthal anisotropy plots were extracted from simulations. Dose homogeneities V200%V100% were calculated for all radionuclide-shield combinations.
RESULTS: TFs are favorable for IMBT and ranged between 12.9% and 32.2% for 192Ir, 4.0%-16.1% for 75Se and 1.2-6.4% for 169Yb for all shield designs. Average beam-widths in the polar and azimuthal directions were reduced to the range of 42°-112° and 27°-107°, respectively, for all shield-radionuclide combinations. Dose homogeneities for all the radionuclide-shield combinations were within 12% of the non-IMBT tandem.
CONCLUSIONS: This study has quantitatively assessed the influence of various rotating cervical cancer-specific IMBT tandem shields on dosimetry. The dynamic single-channel shields and narrow beam-widths in the polar and azimuthal direction give rise to highly anisotropic distributions. Intermediate-to-high energy radionuclides, 75Se and 169Yb substantially improve the modulation capacity of IMBT and pave the way for treating large and complex cervical cancer without interstitial needle implantation.},
keywords = {Anisotropy, Brachytherapy, Female, Humans, Image-guided cervix brachytherapy, Intensity modulated brachytherapy, Intensity-Modulated, Iridium Radioisotopes, Magnetic Resonance Imaging, Monte Carlo based dosimetry, Monte Carlo Method, MRI-guided GYN brachytherapy, Radiometry, Radiotherapy, Selenium Radioisotopes, Uterine Cervical Neoplasms, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
METHODS: Three different IMBT shields were modeled and simulated in RapidBrachyMCTPS. Each tungsten shield was designed to fit inside a 6 mm-wide MRI-compatible tandem. The active core of the source was replaced with 192Ir, 75Se and 169Yb. Transmission factors (TFs) were calculated and defined as the dose ratio at 1 cm on opposite sides of the shielded tandem on the transverse plane. Polar and azimuthal anisotropy plots were extracted from simulations. Dose homogeneities V200%V100% were calculated for all radionuclide-shield combinations.
RESULTS: TFs are favorable for IMBT and ranged between 12.9% and 32.2% for 192Ir, 4.0%-16.1% for 75Se and 1.2-6.4% for 169Yb for all shield designs. Average beam-widths in the polar and azimuthal directions were reduced to the range of 42°-112° and 27°-107°, respectively, for all shield-radionuclide combinations. Dose homogeneities for all the radionuclide-shield combinations were within 12% of the non-IMBT tandem.
CONCLUSIONS: This study has quantitatively assessed the influence of various rotating cervical cancer-specific IMBT tandem shields on dosimetry. The dynamic single-channel shields and narrow beam-widths in the polar and azimuthal direction give rise to highly anisotropic distributions. Intermediate-to-high energy radionuclides, 75Se and 169Yb substantially improve the modulation capacity of IMBT and pave the way for treating large and complex cervical cancer without interstitial needle implantation.
2019
Shoemaker, Tristan; Vuong, Té; Glickman, Harry; Kaifi, Samar; Famulari, Gabriel; Enger, Shirin A.
Dosimetric Considerations for Ytterbium-169, Selenium-75, and Iridium-192 Radioisotopes in High-Dose-Rate Endorectal Brachytherapy Journal Article
In: International Journal of Radiation Oncology, Biology, Physics, vol. 105, no. 4, pp. 875–883, 2019, ISSN: 1879-355X.
Abstract | Links | BibTeX | Tags: Brachytherapy, Femur, Humans, Iridium Radioisotopes, Monte Carlo Method, Organs at Risk, Pelvic Bones, Radioisotopes, Radiotherapy Dosage, Rectal Neoplasms, Rectum, Selenium Radioisotopes, Tomography, Urinary Bladder, X-Ray Computed, Ytterbium
@article{shoemaker_dosimetric_2019,
title = {Dosimetric Considerations for Ytterbium-169, Selenium-75, and Iridium-192 Radioisotopes in High-Dose-Rate Endorectal Brachytherapy},
author = {Tristan Shoemaker and Té Vuong and Harry Glickman and Samar Kaifi and Gabriel Famulari and Shirin A. Enger},
doi = {10.1016/j.ijrobp.2019.07.003},
issn = {1879-355X},
year = {2019},
date = {2019-11-01},
journal = {International Journal of Radiation Oncology, Biology, Physics},
volume = {105},
number = {4},
pages = {875--883},
abstract = {PURPOSE: To investigate differences between prescribed and postimplant calculated dose in 192Ir high-dose-rate endorectal brachytherapy (HDR-EBT) by evaluating dose to clinical target volume (CTV) and organs at risk (OARs) calculated with a Monte Carlo-based dose calculation software, RapidBrachyMC. In addition, dose coverage, conformity, and homogeneity were compared among the radionuclides 192Ir, 75Se, and 169Yb for use in HDR-EBT.
METHODS AND MATERIALS: Postimplant dosimetry was evaluated using 23 computed tomography (CT) images from patients treated with HDR-EBT using the 192Ir microSelectron v2 (Elekta AB, Stockholm, Sweden) source and the Intracavitary Mold Applicator Set (Elekta AB, Stockholm, Sweden), which is a flexible applicator capable of fitting a tungsten rod for OAR shielding. Four tissue segmentation schemes were evaluated: (1) TG-43 formalism, (2) materials and nominal densities assigned to contours of foreign objects, (3) materials and nominal densities assigned to contoured organs in addition to foreign objects, and (4) materials specified as in (3) but with voxel mass densities derived from CT Hounsfield units. Clinical plans optimized for 192Ir were used, with the results for 75Se and 169Yb normalized to the D90 of the 192Ir clinical plan. RESULTS: In comparison to segmentation scheme 4, TG-43-based dosimetry overestimates CTV D90 by 6% (P = .00003), rectum D50 by 24% (P = .00003), and pelvic bone D50 by 5% (P = .00003) for 192Ir. For 169Yb, CTV D90 is overestimated by 17% (P = .00003) and rectum D50 by 39% (P = .00003), and pelvic bone D50 is significantly underestimated by 27% (P = .007). Postimplant dosimetry calculations also showed that a 169Yb source would give 20% (P = .00003) lower rectum V60 and 17% (P = .00008) lower rectum D50.
CONCLUSIONS: Ignoring high-Z materials in dose calculation contributes to inaccuracies that may lead to suboptimal dose optimization and disagreement between prescribed and calculated dose. This is especially important for low-energy radionuclides. Our results also show that with future magnetic resonance imaging-based treatment planning, loss of CT density data will only affect calculated dose in nonbone OARs by 2% or less and bone OARs by 13% or less across all sources if material composition and nominal mass densities are correctly assigned.},
keywords = {Brachytherapy, Femur, Humans, Iridium Radioisotopes, Monte Carlo Method, Organs at Risk, Pelvic Bones, Radioisotopes, Radiotherapy Dosage, Rectal Neoplasms, Rectum, Selenium Radioisotopes, Tomography, Urinary Bladder, X-Ray Computed, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
METHODS AND MATERIALS: Postimplant dosimetry was evaluated using 23 computed tomography (CT) images from patients treated with HDR-EBT using the 192Ir microSelectron v2 (Elekta AB, Stockholm, Sweden) source and the Intracavitary Mold Applicator Set (Elekta AB, Stockholm, Sweden), which is a flexible applicator capable of fitting a tungsten rod for OAR shielding. Four tissue segmentation schemes were evaluated: (1) TG-43 formalism, (2) materials and nominal densities assigned to contours of foreign objects, (3) materials and nominal densities assigned to contoured organs in addition to foreign objects, and (4) materials specified as in (3) but with voxel mass densities derived from CT Hounsfield units. Clinical plans optimized for 192Ir were used, with the results for 75Se and 169Yb normalized to the D90 of the 192Ir clinical plan. RESULTS: In comparison to segmentation scheme 4, TG-43-based dosimetry overestimates CTV D90 by 6% (P = .00003), rectum D50 by 24% (P = .00003), and pelvic bone D50 by 5% (P = .00003) for 192Ir. For 169Yb, CTV D90 is overestimated by 17% (P = .00003) and rectum D50 by 39% (P = .00003), and pelvic bone D50 is significantly underestimated by 27% (P = .007). Postimplant dosimetry calculations also showed that a 169Yb source would give 20% (P = .00003) lower rectum V60 and 17% (P = .00008) lower rectum D50.
CONCLUSIONS: Ignoring high-Z materials in dose calculation contributes to inaccuracies that may lead to suboptimal dose optimization and disagreement between prescribed and calculated dose. This is especially important for low-energy radionuclides. Our results also show that with future magnetic resonance imaging-based treatment planning, loss of CT density data will only affect calculated dose in nonbone OARs by 2% or less and bone OARs by 13% or less across all sources if material composition and nominal mass densities are correctly assigned.
2018
Famulari, Gabriel; Pater, Piotr; Enger, Shirin A.
Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study Journal Article
In: International Journal of Radiation Oncology, Biology, Physics, vol. 100, no. 1, pp. 270–277, 2018, ISSN: 1879-355X.
Abstract | Links | BibTeX | Tags: Brachytherapy, Gadolinium, Imaging, Iodine Radioisotopes, Iridium Radioisotopes, Linear Energy Transfer, Monte Carlo Method, Phantoms, Radioisotopes, Radiometry, Radiotherapy Dosage, Relative Biological Effectiveness, Selenium Radioisotopes, Ytterbium
@article{famulari_microdosimetric_2018,
title = {Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study},
author = {Gabriel Famulari and Piotr Pater and Shirin A. Enger},
doi = {10.1016/j.ijrobp.2017.09.040},
issn = {1879-355X},
year = {2018},
date = {2018-01-01},
journal = {International Journal of Radiation Oncology, Biology, Physics},
volume = {100},
number = {1},
pages = {270--277},
abstract = {PURPOSE: Radioisotopes such as 75Se, 169Yb, and 153Gd have photon energy spectra and half-lives that make them excellent candidates as alternatives to 192Ir for high-dose-rate brachytherapy. The aim of the present study was to evaluate the relative biological effectiveness (RBE) of current (192Ir, 125I, 103Pd) and alternative (75Se, 169Yb, 153Gd) brachytherapy radionuclides using Monte Carlo simulations of lineal energy distributions.
METHODS AND MATERIALS: Brachytherapy sources (microSelectron v2 [192Ir, 75Se, 169Yb, 153Gd], SelectSeed [125I], and TheraSeed [103Pd]) were placed in the center of a spherical water phantom with a radius of 40 cm using the Geant4 Monte Carlo simulation toolkit. The kinetic energy of all primary, scattered, and fluorescence photons interacting in a scoring volume were tallied at various depths from the source. Electron tracks were generated by sampling the photon interaction spectrum and tracking all the interactions down to 10 eV using the event-by-event capabilities of the Geant4-DNA models. The dose mean lineal energy (y¯D) values were obtained through random sampling of transfer points and overlaying spherical scoring volumes within the associated volume of the tracks. The scoring volume diameter was determined by fitting the y¯D ratio for 125I to its observed RBE.
RESULTS: y¯D increased with the increasing distance from the source for 192Ir, 75Se, and 169Yb, remained constant for 153Gd and 125I, and decreased for 103Pd. The diameter at which the y¯D ratio coincided with the RBE of 1.15 to 1.20 for 125I was ∼25 to 40 nm. The RBE (reference 1 MeV photons) at high doses and dose rates for 192Ir, 75Se, 169Yb, 153Gd, 125I, and 103Pd was 1.028 to 1.034, 1.05 to 1.07, 1.12 to 1.15, 1.16 to 1.21, 1.15 to 1.20, and 1.17 to 1.22, respectively.
CONCLUSIONS: The radiation quality of the radionuclides under investigation was greater than that of high-energy photons. The present study has provided a set of values to modify the prescription doses for brachytherapy to account for the variation in radiation quality among radionuclides.},
keywords = {Brachytherapy, Gadolinium, Imaging, Iodine Radioisotopes, Iridium Radioisotopes, Linear Energy Transfer, Monte Carlo Method, Phantoms, Radioisotopes, Radiometry, Radiotherapy Dosage, Relative Biological Effectiveness, Selenium Radioisotopes, Ytterbium},
pubstate = {published},
tppubtype = {article}
}
METHODS AND MATERIALS: Brachytherapy sources (microSelectron v2 [192Ir, 75Se, 169Yb, 153Gd], SelectSeed [125I], and TheraSeed [103Pd]) were placed in the center of a spherical water phantom with a radius of 40 cm using the Geant4 Monte Carlo simulation toolkit. The kinetic energy of all primary, scattered, and fluorescence photons interacting in a scoring volume were tallied at various depths from the source. Electron tracks were generated by sampling the photon interaction spectrum and tracking all the interactions down to 10 eV using the event-by-event capabilities of the Geant4-DNA models. The dose mean lineal energy (y¯D) values were obtained through random sampling of transfer points and overlaying spherical scoring volumes within the associated volume of the tracks. The scoring volume diameter was determined by fitting the y¯D ratio for 125I to its observed RBE.
RESULTS: y¯D increased with the increasing distance from the source for 192Ir, 75Se, and 169Yb, remained constant for 153Gd and 125I, and decreased for 103Pd. The diameter at which the y¯D ratio coincided with the RBE of 1.15 to 1.20 for 125I was ∼25 to 40 nm. The RBE (reference 1 MeV photons) at high doses and dose rates for 192Ir, 75Se, 169Yb, 153Gd, 125I, and 103Pd was 1.028 to 1.034, 1.05 to 1.07, 1.12 to 1.15, 1.16 to 1.21, 1.15 to 1.20, and 1.17 to 1.22, respectively.
CONCLUSIONS: The radiation quality of the radionuclides under investigation was greater than that of high-energy photons. The present study has provided a set of values to modify the prescription doses for brachytherapy to account for the variation in radiation quality among radionuclides.
2014
Adams, Quentin E.; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Enger, Shirin A.; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.
Interstitial rotating shield brachytherapy for prostate cancer Journal Article
In: Medical Physics, vol. 41, no. 5, pp. 051703, 2014, ISSN: 2473-4209.
Abstract | Links | BibTeX | Tags: Brachytherapy, Catheters, Computer-Assisted, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Needles, Nickel, Platinum Compounds, Prostatic Neoplasms, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Time Factors, Titanium, Urethra, Urinary Bladder
@article{adams_interstitial_2014,
title = {Interstitial rotating shield brachytherapy for prostate cancer},
author = {Quentin E. Adams and Jinghzu Xu and Elizabeth K. Breitbach and Xing Li and Shirin A. Enger and William R. Rockey and Yusung Kim and Xiaodong Wu and Ryan T. Flynn},
doi = {10.1118/1.4870441},
issn = {2473-4209},
year = {2014},
date = {2014-05-01},
journal = {Medical Physics},
volume = {41},
number = {5},
pages = {051703},
abstract = {PURPOSE: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT).
METHODS: A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%.
RESULTS: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources.
CONCLUSIONS: For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.},
keywords = {Brachytherapy, Catheters, Computer-Assisted, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Needles, Nickel, Platinum Compounds, Prostatic Neoplasms, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Radiotherapy Planning, Rectum, Time Factors, Titanium, Urethra, Urinary Bladder},
pubstate = {published},
tppubtype = {article}
}
METHODS: A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%.
RESULTS: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources.
CONCLUSIONS: For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.
2013
Enger, Shirin A.; Fisher, Darrell R.; Flynn, Ryan T.
Gadolinium-153 as a brachytherapy isotope Journal Article
In: Physics in Medicine and Biology, vol. 58, no. 4, pp. 957–964, 2013, ISSN: 1361-6560.
Abstract | Links | BibTeX | Tags: Anisotropy, Brachytherapy, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Photons, Prostatic Neoplasms, Radiation, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Scattering
@article{enger_gadolinium-153_2013,
title = {Gadolinium-153 as a brachytherapy isotope},
author = {Shirin A. Enger and Darrell R. Fisher and Ryan T. Flynn},
doi = {10.1088/0031-9155/58/4/957},
issn = {1361-6560},
year = {2013},
date = {2013-02-01},
journal = {Physics in Medicine and Biology},
volume = {58},
number = {4},
pages = {957--964},
abstract = {The purpose of this work was to present the fundamental dosimetric characteristics of a hypothetical (153)Gd brachytherapy source using the AAPM TG-43U1 dose-calculation formalism. Gadolinium-153 is an intermediate-energy isotope that emits 40-100 keV photons with a half-life of 242 days. The rationale for considering (153)Gd as a brachytherapy source is for its potential of patient specific shielding and to enable reduced personnel shielding requirements relative to (192)Ir, and as an isotope for interstitial rotating shield brachytherapy (I-RSBT). A hypothetical (153)Gd brachytherapy source with an active core of 0.84 mm diameter, 10 mm length and specific activity of 5.55 TBq of (153)Gd per gram of Gd was simulated with Geant4. The encapsulation material was stainless steel with a thickness of 0.08 mm. The radial dose function, anisotropy function and photon spectrum in water were calculated for the (153)Gd source. The simulated (153)Gd source had an activity of 242 GBq and a dose rate in water 1 cm off axis of 13.12 Gy h(-1), indicating that it would be suitable as a low-dose-rate or pulsed-dose-rate brachytherapy source. The beta particles emitted have low enough energies to be absorbed in the source encapsulation. Gadolinium-153 has an increasing radial dose function due to multiple scatter of low-energy photons. Scattered photon dose takes over with distance from the source and contributes to the majority of the absorbed dose. The anisotropy function of the (153)Gd source decreases at low polar angles, as a result of the long active core. The source is less anisotropic at polar angles away from the longitudinal axes. The anisotropy function increases with increasing distance. The (153)Gd source considered would be suitable as an intermediate-energy low-dose-rate or pulsed-dose-rate brachytherapy source. The source could provide a means for I-RSBT delivery and enable brachytherapy treatments with patient specific shielding and reduced personnel shielding requirements relative to (192)Ir.},
keywords = {Anisotropy, Brachytherapy, Equipment Design, Gadolinium, Humans, Iridium Radioisotopes, Male, Monte Carlo Method, Photons, Prostatic Neoplasms, Radiation, Radiation Protection, Radioisotopes, Radiotherapy Dosage, Scattering},
pubstate = {published},
tppubtype = {article}
}
